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Abstract: Negative dimensional integration method (NDIM) is a technique to deal

with D-dimensional Feynman loop integrals. Since most of the physical quantities in

perturbative Quantum Field Theory (pQFT) require the ability of solving them, the

quicker and easier the method to evaluate them the better. The NDIM is a novel and

promising technique, ipso facto requiring that we put it to test in different contexts and

situations and compare the results it yields with those that we already know by other

well-established methods. It is in this perspective that we consider here the calculation of

an on-shell two-loop three point function in a massless theory. Surprisingly this approach

provides twelve non-trivial results in terms of double power series. More astonishing than

this is the fact that we can show these twelve solutions to be different representations for

the same well-known single result obtained via other methods. It really comes to us as

a surprise that the solution for the particular integral we are dealing with is twelvefold

degenerate.
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1 Introduction

Negative dimensional integration method (NDIM) was first devised by Halliday et al. [1, 2]

with the aim of dealing with Feynman loop integrals in quantum field theory (QFT). It

combines the powerful concepts of analytic continuation, translational invariance and di-

mensional regularization [3, 4, 5, 6] (DREG) in such a way that the intricate positive

dimensional integration is transformed into negative dimensional integration of polyno-

mial type. In practical terms, what one needs to do is to solve systems of linear algebraic

equations and gaussian-like integrals.

Before plunging deeply in the mire of it, let us briefly make some comments. First

of all, what do we mean by negative dimensions? Obviously, at their face value they

can only be fictional. Nevertheless, in a stretch of our imagination, if we allow ourselves

just the possibility of their existence, maybe we can bring into fruition something ever

undreamed of before. So, to begin with, let us mirror our reasoning with that behind

DREG. There, the all important concept is the parameter D, the space-time dimension,

allowed to assume complex values. However, this in no way means that we want or will

even define operations like scalar product [4, 5] in some general D to have reality. The

reason is quite simple: Physics — and even the common sense — tells us that D is a

positive integer number. We keep our eyes in this fact. One may think that this way of

expressing the result of a given Feynman integral in an arbitrary space-time dimension is

very elegant indeed, but at the end of the day, one always has to look into the real physical

world, that is, that of positive integer D. Actually, in the whole process of DREG it is

important to keep D arbitrary because the analyticity properties depend on the space-

time dimension and, of course, any singularities do so depend on it too. Wilson [5] noted,

very early, that the so-called integration in D-dimensions is not in fact real literally. It

only seems to be. It only behaves like it is.

So, we too define an integral in D-dimensions by means of an analytic function and

1



J
H
E
P
0
9
(
1
9
9
7
)
0
0
2

then work with general D, negative values included. We will not attempt to make any

sense of it or speculate about the D < 0 ”world”. What we do is just allow for it without

trying to see how real — or how fictional, for that matter — it is, before doing the

analytic continuation back to D > 0. In other words, we are not concerned with seeking

any meaning for a negative dimensional world nor seeking any new Physics.

Let us sketch the methodology proper. The idea is quite simple: we analytically con-

tinue the Feynman integral we want to evaluate into D < 0 and solve it there. Then,

the result we get there we bring it back into the realm of D > 0, by another analytic

continuation. As we shall see, the whole procedure is much easier to do compared to

positive dimensional techniques. Up to now, for all the Feynman integrals we have calcu-

lated using NDIM, the results agree with the ones calculated in the positive dimensional

regime [7, 8, 9]. This includes even some light-cone gauge loop integrals [10], which

knowingly are harder to solve with other approaches.

The outline of our paper is as follows: in Sec. 2 we solve explicitly a two-loop Feynman

integral entering the two-loop radiative correction to the massless triangle diagram using

the negative–D approach. Then, we show how to analytically continue the result to

positive D and give the result for two on-shell external legs. In Sec. 3 we conclude this

work commenting on some new results we have for massive one-loop and off-shell two-loop

Feynman integrals. Finally, in the Appendix we list all the other remaining degenerate

solutions, for the sake of completeness.

2 On-Shell Two-loop Vertex

As we have mentioned earlier, our work here is done within the perpective of checking

NDIM methodology for D-dimensional Feynman integrals. Therefore, we have chosen as

our ”lab test” for it, the evaluation of an integral pertinent to the Feynman diagram of

Fig.1. It is a two-loop graph with four particles in the intermediate states, i.e., containing

four propagators. For simplicity we take the massless case and in order to compare our

result with the one already known in the literature, we take a particular limit of two

on-shell external legs.

Since ours is a choice example, we cannot become too excited about NDIM and its

seemingly simplicity, yet one can convince himself that the task of solving Feynman loop

integrals is quite easy in this approach (at least in principle). Of course, we can envisage

and even anticipate some technical difficulties in other contexts, which is inherent to the

method, such as the necessity of dealing with multi-indexed summations.

NDIM is implemented with a few simple steps: Firstly, we calculate gaussian or

gaussian-type integrals1, which are not difficult to handle, and some books on QFT even

list them in tables. Then, one makes an expansion in Taylor series of the result obtained,

and compare it with the expansion in Taylor series of the original gaussian or gaussian-

type integral. Comparison term by term of both series then yield a system of linear

1In D-dimensional momentum space.
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algebraic equations, with constraints arising from intermediate multinomial expansions.

NDIM requires that we solve this system. The principle therefore is quite simple! Let us

then take a practical example and see how it works.

?

�
�
�

�
�

�
�

�
�

�
��

@
@
@
@
@
@
@
@
@

@
@R& %

t = k − p k

p

q − p q

q − r − k

r

Figure 1: Two-loop three point vertex.

Let our launching-pad gaussian-like double integral be

I =
∫ ∫

dDr dDq exp
[
−αq2 − β(q − p)2 − γr2 − ω(q − r − k)2

]
. (2.1)

This clearly is a pertinent integral to the diagram of Fig.1. For reasons of simplicity

and future comparison, let us consider that two of the external particles are real, i.e., let

them be on-shell, namely, k2 = t2 = 0.

Completing the square in the variable q we can carry out the first integration and get

I =
(
π

λ

) 1
2
D

e−βp
2+β2p2

λ
+ 2βωpk

λ

∫
dDr exp

(
−θr2 − 2ωrk

)
× exp

[
1

λ

(
ω2r2 + 2βωpr + 2ω2rk

)]
, (2.2)

where θ = γ + ω and λ = α + β + ω. Following the same procedure we perform the

remaining integration, remembering that t = k − p and that because of the on-shell

condition t2 = k2 = 0, p2 = 2pk:

I =

(
π2

φ

) 1
2
D

exp

[
−1

φ
(αβγ + αβω)p2

]
, (2.3)

where φ = αγ + αω + βγ + βω + γω. Expanding the exponential in Taylor series and

using the multinomial expansion in φ, we get

I = πD
∞∑

{ni=0}

(−p2)n1+n2(−n1 − n2 −
1
2
D)!

n1!n2!n3!n4!n5!n6!n7!

×αn1+n2+n3+n4βn1+n2+n5+n6γn1+n3+n5+n7ωn2+n4+n6+n7 , (2.4)

where the summation indices must satisfy the constraint −n1−n2−
1
2
D = n3 +n4 +n5 +

n6 + n7 which is the condition imposed by the multinomial expansion.
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Now comes the trick [1, 7, 8, 9, 10] of negative dimensions: expand the integral (2.1)

in Taylor series,

I =
∞∑

i,j,l,m=0

(−1)i+j+l+mαiβjγlωm

i!j!l!m!

×
∫ ∫

dDq dDr (q2)i
[
(q − p)2

]j
(r2)l

[
(r − q + k)2

]m
, (2.5)

and define

JNDIM =
∫
dDq

∫
dDr (q2)i

[
(q − p)2

]j
(r2)l

[
(r − q + k)2

]m
. (2.6)

We already note that this would be exactly the Feynman integral needed to be eval-

uated for the diagram in Fig.1 if it were not for the positive exponents i, j, l and m.

Comparing now (2.4) and (2.5) we conclude that

JNDIM =
πDg(i, j, l,m)

(−1)i+j+l+m

∞∑
{ni=0}

(−p2)n1+n2Γ(1− n1 − n2 −
1
2
D)

n1!n2!n3!n4!n5!n6!n7!

×δn1+n2+n3+n4,iδn1+n2+n5+n6,jδn1+n3+n5+n7,lδn2+n4+n6+n7,m, (2.7)

where

g(i, j, l,m) = Γ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m).

We can immediately see that there is a seven index summation2 and five equations

linking them (remembering that one comes from the constraint imposed by the multino-

mial expansion). Therefore, altogether the system can be solved in twenty-one different

ways with two remaining series3. Nine of them are trivial solutions, which present no

interest at all. The remaining twelve we must solve one by one. In principle we do not

know whether these are equivalent or not [7, 11, 12].

A little bit of algebraic rearrangement yields

JNDIM = (−π)D(p2)σg(i, j, l,m)Γ(1− σ −
1

2
D)

×
∞∑

{ni=0}

δn1+n2+n3+n4,iδn1+n2+n5+n6,jδn1+n3+n5+n7,lδn2+n4+n6+n7,m

n1!n2!n3!n4!n5!n6!n7!
, (2.8)

where we have defined σ = i+ j + l +m+D.

It is a simple matter to write down a computer program that solves the system exactly

in all its twenty-one different ways. One of the solutions, namely, that with remaining

sum indices n2 and n6 is

S1 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− j −m− 1
2
D)Γ(1− l − 1

2
D)Γ(1 + j − σ)

(2.9)

×
1

Γ(1 + l +m + 1
2
D)

∞∑
n2,n6=0

(−σ|n2)(1
2
D + l|n2 + n6)(σ − j|n6)

n2!n6!(1− j −m− 1
2
D|n2 + n6)

,

2I.e., a ”heptaple” series.
3The remnant double series.
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where

(a|b) ≡ (a)b =
Γ(a + b)

Γ(a)

is the Pochhammer symbol [13, 14, 15] and we use one of its properties, i.e.

(a| − k) =
(−1)k

(1− a|k)
, (2.10)

within the double series. Note that the sum above can be rewritten in terms of hy-

pergeometric functions 2F1 if we use another property of the Pochhammer symbol, i.e.,

(a|b + c) = (a + b|c)(a|b). Now, a hypergeometric function 2F1 with unit argument can,

within certain constraints in its arguments, be summed [13, 14, 15],

2F1(a, b; c|1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (2.11)

Rearranging first the n6 sum we have

S1 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− j −m− 1
2
D)Γ(1− l − 1

2
D)Γ(1 + j − σ)

×
∞∑

n2=0

(−σ|n2)(1
2
D + l|n2)

n2!(1− j −m− 1
2
D|n2)

∞∑
n6=0

(σ − j|n6)(1
2
D + l + n2|n6)

n6!(1− j −m− 1
2
D + n2|n6)

×
1

Γ(1 + l +m+ 1
2
D)

, (2.12)

where the second series is by definition the gaussian hypergeometric function, 2F1. Using

(2.11) we can sum it and then sum also the series in n2, to get

S1 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− l − 1
2
D)Γ(1 + j − σ)Γ(1 + l +m+ 1

2
D)

×
Γ(1− l −m−D)

Γ(1 + i− σ)Γ(1−m− 1
2
D)

. (2.13)

Now, grouping the gamma functions in convenient Pochhammer symbols and using

(2.10) we analytic continue to negative values of the exponents i, j, l, and m and we go

back to positive D to get

SAC1 = πD(p2)σ(−i|σ)(−j|σ)(−l| −m−
1

2
D)(−m|σ − i− j −

1

2
D)

×(σ +
1

2
D| − 2σ −

1

2
D)(D + l +m| − l −

1

2
D). (2.14)

This is the general result, in Euclidean space, for the Feynman graph of Fig.1.

In the important particular case when i = j = l = m = −1, the result is

SAC1 =
πD(p2)D−4Γ2(D − 3)Γ2(1

2
D − 1)Γ(2− 1

2
D)Γ(4−D)

Γ(D − 2)Γ(3
2
D − 4)

, (2.15)
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which is the well-known result in D-dimensions [16].

We ask immediately: what is the result that the other solutions provide? The answer

is as surprising as it could be: the result is the same. All the twelve non-trivial solutions,

even distinct, give the same result. It is an amazing feature revealed by NDIM.

Just to check on this, let us consider another solution, for instance, the one where n2

and n5 are the remaining sum indices,

S2 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− σ −m− 1
2
D)Γ(1 + j − σ)Γ(1 + l +m+ 1

2
D)

×
1

Γ(1 + i +m+ 1
2
D)

∞∑
n2,n5=0

(−1)n2+n5(−σ|n2)(−j + σ|n5)

n2!n5!(1− σ −m− 1
2
D|n2 − n5)

×
1

(1 + i +m+ 1
2
D|n5 − n2)

. (2.16)

As in the previous case we can sum both series. Using (2.10) one can rewrite the n5

series and identify it as a 2F1 function,

S2 = (−π)D(p2)σP2(i, j, l,m;D)
∞∑

n2=0

(−1)n2(−σ|n2)

n2!(1− σ −m− 1
2
D|n2)

(2.17)

×
1

(1 + i+m + 1
2
D| − n2)

∞∑
n5=0

(σ − j|n5)(σ +m + 1
2
D − n2|n5)

n5!(1 + i+m + 1
2
D − n2|n5)

,

where

P2(i, j, l,m;D) =
Γ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− σ −m− 1
2
D)Γ(1 + j − σ)

×
1

Γ(1 + l +m+ 1
2
D)Γ(1 + i+m + 1

2
D)

.

Summing the n5 series with formula (2.11) and using again (2.10) to rewrite the n2

series, we get

S2 = (−π)D(p2)σP2(i, j, l,m;D)
Γ(1 + i+m + 1

2
D)Γ(1 + i + j − 2σ)

Γ(1 + i− σ)Γ(1− l − 1
2
D)

×
∞∑

n2=0

(−σ|n2)(1
2
D + l|n2)

n2!(1− σ −m− 1
2
D|n2)

. (2.18)

This series is by definition a summable 2F1 function; with the help of eq. (2.11), we

get the expression (2.13) which leads to the correct result (2.15).

The reader can prove, following the same procedure, that all the twelve solutions

provide the correct result. The question that arises is: Why is this so? We have no

answer to this puzzle at the moment and can only conjecture that maybe if the remaining

series has unity argument and is summable then the result will be degenerate. Of course,

further research is necessary in order to prove or disprove this conjecture.
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3 Conclusion

Our two-loop ”lab testing” for NDIM approach to calculate Feynman integrals has re-

vealed some very interesting features of the method. The methodology is quite simple:

solving gaussian integrals and systems of linear algebraic equations. NDIM yielded twelve

non-trivial solutions which give the same result, eq. (2.14), for the general case, i.e., D-

dimensions and arbitrary exponents of propagators. This work encourages us to tackle a

more difficult task: the calculation of massive four point one-loop integrals [7, 11] and off-

shell two-loop Feynman graphs [12]. Work in this line is in progress, and we have already

obtained some more encouraging results. For the latter, for example, a new surprise with

NDIM yielding twenty-one distinct (and new!) results, some of them in terms of Ap-

pel’s [17] hypergeometric functions F4 which are simpler than the usual dilogarithms [18].

These new results will be the subject addressed in our shortly forthcoming paper.

Acknowledgments

AGMS wishes to thank CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico, Brasil) for the financial support.

A The Remaining Solutions

For the sake of completeness, in this appendix we list the remaining ten non-trivial solu-

tions since in the article proper we have explicitly shown only two of them, and that the

se two give the correct result. All of these can be summed and analytically continued to

positive D with the same ideas we used in section 2.

S3 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ + l + 1
2
D)Γ(1− l − 1

2
D)Γ(1 + i− σ)Γ(1 + j − σ)

(A.1)

×
1

Γ(1 + l +m+ 1
2
D)

∞∑
n4,n6=0

(−j + σ|n6)(1
2
D + l|n4 + n6)(−i + σ|n4)

n4!n6!(1 + l + 1
2
D + σ|n4 + n6)

,

S4 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + j + l + 1
2
D)Γ(1 + i +m+ 1

2
D)Γ(1 + j − σ)Γ(1 + l +m+ 1

2
D)

(A.2)

×
1

Γ(1 + i− σ)

∞∑
n4,n5=0

(−1)n4+n5(−i + σ|n4)(−j + σ|n5)

n4!n5!(1 + j + l + 1
2
D|n4 − n5)(1 + i+m + 1

2
D|n5 − n4)

,

S5 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + i + l + 1
2
D)Γ(1 + j +m+ 1

2
D)Γ(1 + j − σ)Γ(1 + l +m+ 1

2
D)

(A.3)

×
1

Γ(1 + i− σ)

∞∑
n3,n6=0

(−1)n3+n6(−i + σ|n3)(−j + σ|n6)

n3!n6!(1 + i+ l + 1
2
D|n6 − n3)(1 + j +m + 1

2
D|n3 − n6)

,

7
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S6 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ +m+ 1
2
D)Γ(1−m− 1

2
D)Γ(1 + i− σ)Γ(1 + j − σ)

(A.4)

×
1

Γ(1 + l +m+ 1
2
D)

∞∑
n3,n5=0

(−i+ σ|n3)(−j + σ|n5)(1
2
D +m|n3 + n5)

n3!n5!(1 +m+ 1
2
D + σ|n3 + n5)

,

S7 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− i−m− 1
2
D)Γ(1 + i− σ)Γ(1− l − 1

2
D)

(A.5)

×
1

Γ(1 + l +m+ 1
2
D)

∞∑
n2,n4=0

(−σ|n2)(−i + σ|n4)(1
2
D + l|n2 + n4)

n2!n4!(1− i−m− 1
2
D|n2 + n4)

,

S8 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1 + j +m + 1
2
D)Γ(1 + i− σ)Γ(1−m− 1

2
D − σ)Γ(1 + l +m+ 1

2
D)

×
∞∑

n2,n3=0

(−1)n2+n3(−σ|n2)(−i + σ|n3)

n2!n3!(1 + j +m + 1
2
D|n3 − n2)(1−m− 1

2
D − σ|n2 − n3)

, (A.6)

S9 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1 + i + l + 1
2
D)Γ(1 + j − σ)Γ(1− l − 1

2
D − σ)Γ(1 + l +m+ 1

2
D)

×
∞∑

n1,n6=0

(−1)n1+n6(−σ|n1)(−j + σ|n6)

n1!n6!(1 + i + l + 1
2
D|n6 − n1)(1− l − 1

2
D − σ|n1 − n6)

, (A.7)

S10 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1−m− 1
2
D)Γ(1 + j − σ)Γ(1− j − l − 1

2
D)

(A.8)

×
1

Γ(1 + l +m+ 1
2
D)

∞∑
n1,n5=0

(−σ|n1)(−j + σ|n5)(1
2
D +m|n1 + n5)

n1!n5!(1− j − l − 1
2
D|n1 + n5)

,

S11 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1 + j + l + 1
2
D)Γ(1 + i− σ)Γ(1− l − 1

2
D − σ)Γ(1 + l +m + 1

2
D)

×
∞∑

n1,n4=0

(−1)n1+n4(−σ|n1)(−i + σ|n4)

n1!n4!(1 + j + l + 1
2
D|n4 − n1)(1− l − 1

2
D − σ|n1 − n4)

, (A.9)

S12 =
(−π)D(p2)σΓ(1 + i)Γ(1 + j)Γ(1 + l)Γ(1 +m)Γ(1− σ − 1

2
D)

Γ(1 + σ)Γ(1− i− l − 1
2
D)Γ(1 + i− σ)Γ(1−m− 1

2
D)

(A.10)

×
1

Γ(1 + l +m + 1
2
D)

∞∑
n1,n2=0

(−σ|n1)(−i + σ|n3)(1
2
D +m|n1 + n3)

n1!n2!(1− i− l − 1
2
D|n1 + n3)

,

8



J
H
E
P
0
9
(
1
9
9
7
)
0
0
2
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